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Abstract. We study the way isospin symmetry violation can be generated within the Hidden Local Sym-
metry (HLS) Model. We show that isospin symmetry breaking effects on pseudoscalar mesons naturally
induces correspondingly effects within the physics of vector mesons, through kaon loops. In this way, one
recovers all features traditionally expected from ρ − ω mixing and one finds support for the Orsay phase
modelling of the e+e− → π+π− amplitude. We then examine an effective procedure which generates mix-
ing in the whole ρ, ω, φ sector of the HLS Model. The corresponding model allows us to account for all
two body decays of light mesons accessible to the HLS model in modulus and phase, leaving aside the
ρ → ππ and K∗ → Kπ modes only, which raise a specific problem. Comparison with experimental data
is performed and covers modulus and phase information; this represents 26 physics quantities successfully
described with very good fit quality within a constrained model which accounts for SU(3) breaking, nonet
symmetry breaking in the pseudoscalar sector and, now, isospin symmetry breaking.

1 Introduction

Despite the large difference in the u and d current quark
masses, isospin violation in the strong interaction is typ-
ically at the order of a few percent, such as the π± − π0

mass difference. This is because the scale is set not by
(mu −md)/(mu +md) but (mu −md)/ms [1]. Interest in
the contribution of isospin violation is therefore usually
confined to systems where both theoretical (or at least
phenomenological) and experimental precision are high;
for example aµ [2], CP violation in B → 2P (where P ≡
pseudoscalars) and other CKM-matrix systems [3–6], the
pion form-factor [7,8] and various aspects of charge sym-
metry violation in the NN system [9].

However, in e+e− → π+π− the isospin violating pro-
cess of ρ−ωmixing produces a large effect on the inter-
action. This is due to both the isospin independence of
the initial vertex (the coupling of the ω to the photon
is only a third of the coupling of the ρ0 to the photon)
and narrow width of the ω (in the region of the ω reso-
nance the cross-section is approximately 40% larger than
it would be without ρ−ωmixing). Therefore any strongly
interacting system where the ρ0 and ω have significant (if
not necessarily large) production amplitudes can expect
a similar enchancement in π+π− pair production in the
ρ−ω interference region. Lipkin realised this would ap-
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ply to various decays in the B system [10]. Building on
this, Enomoto and Tanabashi discovered a decay channel
that would show a sizeable direct CP asymmetry, B− →
ρ−(ρ0/ω) → ρ−π+π−. Here the penguin term exists only
for B− → ρ−ω not the B− → ρ−ρ0 and the necessary
penguin/tree interference arises through ρ−ωmixing with
the strong phase courtesy of the ω propagator [11] (for
further details see [12]). This gives a renewed interest to
the description of isospin symmetry breaking.

Having just said that ρ−ωmixing can lead to large
effects, it is important to explain the quoted figure (∼ 2%)
for the ω → 2π branching fraction. The pion form factor
can be defined (and a definition is a useful thing) through
[13]

Fπ(s) = Fρ(s)

(
1 +

fωγ

fργ

Π̃ρω

s−m2
ω + imωΓω

)
. (1)

Though the mixing amplitude Π̃ρω � −4300 MeV2 is
small compared with the scale of m2

ω the extremely nar-
row Γω = 8.4 MeV allows the isospin violating contribu-
tion to be sizeable. Correspondingly the ω → 2π decay
must pass through the ρ0 and thus the attenuation factor
is Π̃ρω/mρΓρ and so is down by an order Γω/Γρ � 0.05.

This question of scales and the meaning of the vector
meson resonance states themselves must be firmly kept
in mind when considering the effects of ρ−ωmixing (or
indeed any isospin violation). We shall see that this has a
recent application.
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With this respect, it is useful to introduce isospin sym-
metry breaking within a context especially designed in or-
der to account for physics of light vector and pseudoscalar
mesons simultaneously and fully. The framework of vec-
tor meson dominance (VMD) models is certainly the most
appropriate and, among them, the Hidden Local Symme-
try (HLS) Lagrangian, with its non–anomalous [14] and
anomalous sectors [15] is a good candidate, taking into
account its phenomenological success.

In this paper we extend our previous work on sym-
metry breaking within this context by readdressing first
the ρ − ω mixing [16,17] and then the full ρ − ω − φ
mixing. From our previous studies, we already know how
SU(3) symmetry breaking has to be introduced [18] close
to lines first proposed in [19]; in order to yield an appro-
priate description of physics information for decay pro-
cesses involving η and η′ mesons, it has been shown that
nonet symmetry in the pseudoscalar (PS) sector should
also be broken; a way was proposed in [20] which pro-
vides a good understanding of all radiative decays of light
mesons. Slightly later [21], we showed that this way of
breaking nonet symmetry in the PS sector can be derived
from Chiral Perturbation Theory.

However, tree level amplitudes are not sufficient in or-
der to account for the physics of vector mesons. As clear
from the observed shape of the pion form factor [22,23],
pion loop effects can hardly be neglected when describing
the ρ meson [24–28]. Without a ω−φ mixing mechanism,
any description of their decay modes becomes definitely
poor. This is traditionally introduced by means of a mix-
ing angle. It has been shown that kaon loop effects are
the simplest mechanism within HLS for generating ω − φ
mixing [29]. These loop effects can be accomodated within
the HLS model in an effective way, by introducing vector
meson self–masses and (loop) transition amplitudes like
ω ↔ φ within the Lagrangian. In this way one generates
the appropriate pion form factor shape and all corrections
to ω/φ decays [29].

However, effects of isospin symmetry breaking (like
ω/φ → π+π−, for instance) still remain outside the HLS
framework. We shall show that the loop mechanism which
generates the ω − φ mixing gives a handle to introduce
isospin symmetry breaking also by considering loop ef-
fects, mainly kaon loops. This mechanism, together with
the U(3)/SU(3) symmetry breaking procedure recalled
above, will be shown to provide a clear understanding of
(almost) all decay modes accessible to a VMD approach.

The outline of the paper is as follows. In Sects. 2, 3 and
4 we define a mechanism for isospin symmetry breaking
and examine its consequences on the ρ − ω sector in iso-
lation. In Sect. 5, we illustrate with the pion form factor
the consistency of this approach; we thus show that the
HLS model, broken as we propose, gives to the pion form
factor its well known expression in terms of the so–called
Orsay phase.

Having shown that this approach is consistent, we ex-
tend it in Sect. 6 to a scheme involving the full ρ−ω−φ sec-
tor of the HLS Model. We describe in this Section how the
coupling constants for all two body decays (V PP , V Pγ,

V V P , Pγγ, V e+e−) can be derived from elementary in-
formation provided. In this approach, the ρ−ω−φ mixing
appears to be the at the origin of the ω/φ → ππ decay
processes, which are described both in modulus and phase.

In Sect. 7 we apply this model to fit all data related to
VMD, except for ρ → ππ and K∗ → Kπ which settle a
specific problem, not examined here. The picture obtained
is impressively successful. Finally, we conclude in Sect. 8.
We give in the Appendix most formulae and in three Ta-
bles most of our results which cover 26 physics quantities
simultaneously fitted within a unified framework.

2 Physical fields or ideal fields

In this Section and in the following one, we concentrate
on the ρ−ω mixing in isolation. This allows to outline the
method we use in order to construct a full mixing scheme
for vector mesons.

Within a context of an effective field model where we
definitely stand, one can assume without any loss of gen-
erality that the ρ − ω mixing is produced by an effective
Lagrangian term of the form

Lmixing = Πωρ(s)ρIωI (2)

The use of such a term for parametrising ρ−ω mixing
is a usual assumption (for a review see [24,25], where a
thorough discussion of the origin, properties and values of
Πωρ(s) can also be found). Its origin within the HLS model
is related to kaon loop effects which introduce a correction
of order O((m2

K+ −m2
K0)/m2

K) ∼ (mu −md)/ms, as will
be discussed in Sect. 4 below.

We have denoted above ρI and ωI the ideal field com-
binations (i.e., non–strange pure isospin states); the cor-
responding physical fields will be denoted ρ and ω. For
the present purpose, and following general ideas [24,25],
we only need to assume that Πωρ(s) is a real analytic
function of s (i.e. Π∗

ωρ(s) = Πωρ(s∗) where the symbol ∗

denotes the usual complex conjugation).
Whatever its origin, the term in (2) plays by modify-

ing the ρ− ω mass term by adding a non–diagonal piece,
as for the kaon loop effects responsible for the ω− φ mix-
ing [29]. Among the possible origins of the term in (2),
pion loop effects have been considered. Although this spe-
cific contribution is ruled out within the HLS model [30]
– which rather previleges kaon loop effects – it has been
studied in bi-local field models [31,33]. Following the Re-
nard argument [16], the expected sizeable contribution to
the imaginary part of Πρω from the pion loop is cancelled
by a direct ω → 2π term.

2.1 Loop effects and mixing

There is a consistent way to account for leading loop ef-
fects within the HLS context; this turns out to modify the
mass term in the Lagrangian by including all vector me-
son self–energies and transition amplitudes like φI → ωI ,
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as discussed in [29], but also1 ρI → ωI . In this approach,
loop effects are considered by their effects at tree level
only through modified vector meson masses.

In this case, the relevant piece of the effective La-
grangian, quadratic in the fields, is given by:

L =
1
2
{[m2+Πρ(s)] ρ2I +[m2+Πω(s)] ω2

I +2Πωρ(s) ρIωI}
(3)

Following the approach developed for the ω−φ mixing
[29], we have introduced the ρ and ω self–energies as given
in [29]; these are real analytic functions of s. We have also
assumed that ρI and ωI have the same (Higgs–Kibble,
HK) mass m; one could depart from this by starting with
a SU(2)× U(1) symmetry [32] instead of SU(3) and thus
break the ρ−ω mass generacy already at tree level. How-
ever, we have preferred here neglecting isospin breaking
effects on HK masses, as it is a side issue for the problem
under study. Within the HLS model, the common ρ − ω
mass is [14] m2 = af2

πg
2 in terms of the HLS parameter

a, of the universal vector coupling g and the pion decay
constant fπ.

The diagonalization procedure of the HLS Lagrangian
with one loop corrections is presented in detail in [29]. We
simply recall that the desired diagonalization is obtained
by performing the following linear field tranformation:(

ρ

ω

)
=

(
cos δ(s) sin δ(s)

− sin δ(s) cos δ(s)

)(
ρI

ωI

)
(4)

which connects the physical fields to their ideal combina-
tions. It leads to physical fields which behave like analytic
functions of s; this can be interpreted as a non–local ef-
fect which could be expected as we are not dealing with
fundamental (quark and gluon) degrees of freedom. Ad-
ditionally, it implies at tree level (in this approach) an-
alytical shapes which fit well with physics observations;
for instance, the broad shape of the ρ meson propagator
which shows up in the pion form factor is generated here
mostly by the pion loop agregated to the ρI mass term
(see (3)).

The angle δ(s) – possibly complex – should be chosen
in such a way that the mixed ρω term, appearing still in
(3) after the change to physical fields, identically vanishes.
This provides2:

tan 2δ(s) =
2Πωρ(s)

Πρ(s) −Πω(s)
(5)

and does not depend on the difference of ρI and ωI HK
masses, as this vanishes identically in the approximation
where we stand. Moreover, the s dependence of the ρ− ω
mixing exhibited by (5) is a property already considered
[24,25,37]. This s dependence should be expected, as the

1 At the same order, one might have to include also the par-
ent ρI → φI transition amplitude, as will be seen in Sect. 4

2 It should be noted that the denominator in (5) is nothing
but the difference of the ρI and ωI effective running masses as
they occur in the Lagrangian (3)

mixing function Πωρ(s) should vanish at s = 0 [17] in
any model where the vector mesons couple to conserved
currents.

2.2 Analytic properties of the angle δ(s)

As noted in [29] for the purpose of ω − φ mixing in isola-
tion, angles like δ(s) above are not real for any real s. In
fact, as is clear from (5), sin δ(s), cos δ(s) are real analytic
functions3 of s in an analyticity domain with the same
branch point singularities as the various self–energies or
transition amplitudes; additional algebraic branch points
may occur at odd order zeros or poles of the expression
in (5). For our purpose, one only needs to make weak as-
sumptions which ensure that (4) can be inverted as an
analytic matrix function: we assume that the analyticity
domain contains the upper and lower lips of the physical
region {s > 4m2

π} and that both lips can be connected
with each other by a continuous path while staying inside
this domain. This implies that a segment of {s < 4m2

π}
should also belong to this analyticity domain.

The function δ(s), itself, can have logarithmic singular-
ities; however, it never appears as such in the expressions
we have to handle.

2.3 Interaction terms and self-energies

For completeness, and in order to fix notations for cou-
pling constants, let us recall the relevant interaction piece
of the HLS Lagrangian as given in [29] in terms of renor-
malized fields:

T1 = − iag
4
Z [ωI +

√
2�V φI ]

[
K+ ↔

∂ K
− +K0 ↔

∂ K
0
]

− iag
4
ρI

[
Z
(
K+ ↔

∂ K
− −K0 ↔

∂ K
0
)

+ 2π+ ↔
∂ π

−
]

(6)
We do not introduce here loop corrections to vertices,

as there is no compelling evidence in favor of observable
effects of these with the present data accuracy, even for
the e+e− → π+π− cross section [26] known nowadays with
very good accuracy over a wide range of invariant mass
[22,23].

This Lagrangian piece depends on two SU(3) breaking
parameters, generated by the BKY breaking mechanism
[19,18] Z = [fπ/fK ]2 � 2/3 and �V fit as � 1.4 (see [20,
29]).

Up to anomalous contributions we neglect (they were
estimated negligible in [29]), the ρI , ωI and φI self-energies
are:

Πρ(s) = 2g2
ρIKK

Π(s) + g2ρIππΠ
′(s)

Πω(s) = 2g2
ωIKK

Π(s) (7)

Πφ(s) = 2g2
φIKK

Π(s)

3 Actually, they might only be meromorphic in the physical
sheet, as Πρ(s)−Πω(s) might have zeros in the physical sheet,
at s = 0 for instance
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(see (D1) and (D4) in [29]) in terms of Π(s) and Π ′(s),
respectively the generic kaon and pion loops [29], i.e. the
loops amputated from their coupling constants to vector
mesons. The coupling constants can be read off (6) and
obviously fulfill |gρIKK | = |gωIKK |.

Let us also recall that the Lagrangian derived after
the change of fields fulfills the condition of hermitian an-
alyticity, as in the case of the ω − φ mixing in isolation
[29].

3 The ρ − ω mixing “angle”

Using (7), (5) becomes

tan 2δ(s) =
2Πωρ(s)
g2ρIππΠ

′(s)
(8)

It is quite an interesting feature of the HLS model that
the difference between the ωI and ρI self-energies is the
pion loop to which only ρI couples.

In order to estimate this denominator in the ρ−ω peak
mass region, one should also keep in mind that this is prac-
tically the difference of the (complex and s–dependent) ρ
and ω square masses as they occur in the one–loop cor-
rected Lagrangian. As the width of the ω meson is neg-
ligible compared to those of the ρ meson, this gives an
input for the real part of the pion loop in (8) valid in the
neighborhood of the ρ − ω peak. Indeed, in this region,
the real part can be identified with the difference of the
(Breit–Wigner) masses squared as given in the RPP [34].
Indeed, these are defined as the energy point where the
real part of the corresponding propagators goes to zero,
or equivalently where the phase goes through π/2. There-
fore, writing:

g2ρIππΠ
′(s) = R(s) − iI(s), (9)

(see (A8) in [29]), we have locally, using the RPP masses4:

R(s � m2
ρ) � m2

ρ −m2
ω � −(1.1 ÷ 1.9) 10−2GeV2 (10)

depending on the definition used for the observed ρ mass
[34]; this has to be compared with the imaginary part

I(s � m2
ρ) � mρΓρ = 0.12 GeV2 (11)

Therefore, in the mass region of the ρ and ω mesons,
the real part of Π ′(s) is negligible and then the denomi-
nator in (5) locally reduces to its imaginary part with a
good approximation; additionally, I(s) is positive there,
as can be inferred from its explicit expression [29].

4 Actually, R(s) is a function of s which contains logarithms
and a subtraction polynomial [28], minimally of the form λs,
with λ real to be fixed by means of appropriate renormaliza-
tion conditions. The Breit–Wigner formulation turns out to
approximate locally this real part by a constant which corre-
sponds to the mass given in the RPP [34]. We call this mass
definition observed mass and keep in mind that it may have
little to do with the masses as they occur in Lagrangians

Within the HLS model, Πωρ(s) arises naturally as the
difference of both (neutral and charged) kaon loops [30].
These are perfectly defined analytic functions [29] of s and
each contains a subtraction polynomial which should be
different for neutral and charged kaon loops, at least in
order to account for isospin symmetry breaking for pseu-
doscalar mesons. This issue will be discussed in some more
detail in the next Section, but for the present purpose it is
enough to remark that, even neglecting isospin breaking
effects on masses (then, some logarithm functions cancel
out identically), the HLS expression for Πωρ(s) is essen-
tially a real valued subtraction polynomial which has to
be determined through renormalization conditions [29].
Standard renormalization conditions [29] imply that this
polynomial is minimally of the form c · s, with real c, in
agreement with general considerations [24,25,17].

Thus, within the HLS model, the numerator is essen-
tially real, and the denominator is largely dominated by
the imaginary part of the pion loop in the mass region
of interest. Using the coupling constants which can be
read off from (6) above, and writing cs the amplitude for
Πωρ(s) amputated from the coupling constants to ωI and
ρI , we have:

tan 2δ(s) � i
Z2

2
cs

I(s)
(12)

Therefore, in contrast with the customary mixing case of
ω−φ, the mixing angle is close to being purely imaginary
in the mass region of interest (the ρ− ω peak value).

The mixing scheme presented here is not in contradic-
tion with more standard formulations in terms of a pertur-
bation parameter (see [24] for instance, or more recently
[39]). However, writing it as a complex angle makes the
connection with the ω − φ mixing more transparent. In-
deed, the nature – real or complex – of these mixing angles
follows from peculiarities which could look like kinematical
accidents, essentially the relative values of meson masses
which determine the s–regions where the imaginary part
of loops are non–zero.

Using the RPP world average mass and width values
for the ρ and ω mesons, a better local approximation than
(12) for the mixing “angle” can be written

tan 2δ(s � m2
ρ)

= d m2
ρ exp

{
i

[
π − arctan

mρΓρ −mωΓω

m2
ω −m2

ρ

]}
(13)

where d is a real constant to be fit. The explicit phase
(referred to below as ϕ) becomes 5:

ϕ = Arg[tan 2δ(s � m2
ρ)] = 100.7 ± 0.7 degrees (14)

and does not account for a possible negative sign in the
fit value for d. We will see shortly that this value has to

5 If we use for ρ parameters the values given in the entry
“τ e+e−” of the RPP [34], instead of the world average which
is somewhat less secure, this angle value becomes 95.5 ± 0.8
degrees. Therefore a non–negligible systematic error (5◦, about
7σstat) can affect this number
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be compared with the so–called Orsay phase frequently fit
within the pion form factor in the timelike region; among
recent fit values, let us quote the value obtained within
the HLS framework [26] 104.7◦ ± 4.1◦.

4 SU(2) breaking within the HLS Model

A priori, a straightforward way to introduce isospin sym-
metry breaking within the HLS model could be through
the BKY mechanism [18,19] proved successful when ana-
lyzing SU(3) symmetry breaking effects for radiative de-
cays of light mesons [35,20] or the properties of the η −
η′ system [21]. Actually, such an attempt has been al-
ready considered in the context of radiative decays of light
mesons [36].

Another solution is naturally proposed by the HLS
model in close correspondence with the ω−φ mixing. Let
us name provisionally �(K+K−) and �(K0K

0
) the kaon

loops amputated from coupling constants to external vec-
tor meson lines. These loops are given by dispersion rela-
tions [29] which should be subtracted minimally twice in
order that the dispersion integrals converge.

This gives rise in both cases to a first degree polyno-
mial in s with real coefficients in order to satisfy usual an-
alyticity properties (this is discussed in some detail in Ap-
pendix A of [29]); let us denote by P±(s) and P0(s) resp.,
the subtraction polynomials associated with the kaon
loops just referred to above. Their coefficients are a pri-
ori arbitrary and should be fixed by means of appropriate
renormalization conditions. The constant term is always
chosen to vanish in theories where vector mesons couple
to conserved currents [17] as in the HLS model; the same
effect ensures the masslessness of the photon. If isospin
is conserved, the first degree terms of both polynomials
should clearly be equal. However, if SU(2) is broken, there
is no longer any reason for this requirement to be made.

Therefore, breaking of SU(2) symmetry can be imple-
mented by having different renormalization conditions for
P±(s) = c± s and P0(s) = c0 s. Allowing c± �= c0 appears
to be a consistent effective way to break isospin symmetry
within the HLS model at one–loop order.

For clarity, let us denote by �(K+K−) + P±(s) and
�(K0K

0
) + P0(s), the full kaon loops, exhibiting this way

the (free) subtraction pieces. Up to inessential coefficients
related with vector coupling constants and SU(3) breaking
effects, we have [30]:

ΠφIωI
(s) � �(K+K−) + �(K0K

0
) + P±(s) + P0(s)

ΠρIωI
(s) � �(K+K−) − �(K0K

0
) + P±(s) − P0(s)

ΠρIφI
(s) � �(K+K−) − �(K0K

0
) + P±(s) − P0(s)

(15)
Then, quite generally, the HLS model at one loop al-

lows for transition among the ideal combinations of all
three neutral vector mesons. It should be remarked that
these transitions are associated with kaon loops rather

than with the pion loop6. It is also interesting to note
that, even if one neglects the K± − K0 mass difference,
the transition amplitudes ΠρIωI

(s) and ΠρIφI
(s) do not

drop out, even if their imaginary parts identically van-
ish. Moreover, as loops are analytic functions of s, real
for real s smaller than the loop threshold, the transition
amplitude ΠρIωI

(s) is certainly real in the region of the
ρ − ω peak (up to anomalous loop effects). Additionally,
it certainly fulfills ΠρIωI

(s = 0) = 0. The order of magni-
tude of ΠρIωI

(s) and ΠρIφI
(s) can be derived from their

imaginary parts. By expanding these expressions in the
neigborhood of the ω/φ masses, the dominant term can
be written as [m2

K+ −m2
K0 ]/m2

K (= [mu −md]/ms) cor-
rected by a 3/2 m2

K/m
2
ω/φ factor.

Therefore, the HLS model allows to have naturally a
quasi real ΠρIωI

(s) in the ω − ρ peak region, as obtained
from fits [24,13,27]. This illustrates that loop effects can
be used as the main mechanism in order to break isospin
symmetry by allowing different renormalization conditions
to different kaon loops. Stated otherwise, isospin symme-
try breaking in the pseudoscalar sector already induces
corresponding effects in the vector sector.

Moreover, one observes that the HLS model at one
loop, predicts that the full mixing pattern concerns all
three neutral vector mesons and establishes the ρI − φI

mixing as the physics mechanism for the φ → 2π decay.

5 The pion form factor

In order to compute the pion form factor in the timelike
region, the relevant piece of the interaction Lagrangian,
before changing to physical vector fields7, is:

L = · · · − i
[ag

2
ρI + e(1 − a

2
)A
]

· [π+ ↔
∂ π

−]

−aef2
πg

[
ρI +

1
3
ωI

]
·A+ · · · (16)

where A is the electromagnetic field, e the unit electric
charge, g the universal vector coupling constant and a the
intrinsic HLS parameter fit to 2.35÷ 2.45 [26,20,29]. This
Lagrangian piece is not affected by SU(3)/U(3) symmetry
breakdown.

After the change to physical fields given by (4), it is
obvious that SU(2) symmetry breaking generates a direct
coupling of ω to π+π−. Denoting by g0ρππ = ag

2 the unbro-
ken coupling of ρI to a pion pair, the coupling constants
for physical ρ and ω are:

gρππ = g0ρππ cos δ(s) , gωππ = −g0ρππ sin δ(s) (17)

As δ(s) is close to purely imaginary, this leaves the
broken ρ coupling close to real and the generated coupling
of ω close to purely imaginary8.

6 In order to be complete, we recall that anomalous terms
produce loop effects like Pγ or V P loops which contribute
to the transition amplitudes; these have been estimated to be
numerically small [29]

7 We still skip in this Section mixing with the φ meson
8 We recall that sin iα = i sinhα and cos iα = coshα
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For sake of conciseness, let us also define:

f0
ργ = af2

πg , f
0
ωγ =

af2
πg

3
, (18)

the ρI and ωI couplings to a photon, as they come out of
the standard HLS Lagrangian.

Using the Lagrangian piece in (16) reexpressed in
terms of physical vector fields, it is an easy matter to
compute the pion form factor. Keeping the leading terms
in δ(s), this can be written:

Fπ(s) = 1− a
2

− f
0
ργg

0
ρππ

Dρ(s)
cos2 δ+

f0
ωγg

0
ρππ

Dω(s)
sin δ cos δ (19)

where the Dρ/ω(s) are the inverse vector meson propa-
gators written DV (s) = s − m2

V + imV ΓV (s) in most
phenomenological studies, by releasing the analyticity as-
sumption; in the one–loop Lagrangian we use, these would
essentially be written DV (s) = s−m2 −ΠV (s), as already
obtained and successfully tested by [28] on e+e− → π+π−
data.

In order to make the correspondence with (13) and
(14), and with usual formulae for the pion form factor
[26], let us state d/2 = −A and use ϕ, the phase in (14).
Assuming d is small enough, we also have tan 2δ � sin 2δ
and we can approximate the above expression in the neigh-
borhood of the ρ− ω peak by:

Fπ(s) = 1 − a

2
− f0

ργg
0
ρππ

Dρ(s)
−Aeiϕ f

0
ωγg

0
ρππ

Dω(s)
(20)

This is nothing but the HLS expression of the pion
form factor [26] expressed in terms of the so–called Orsay
phase, named here ϕ.

So, isospin breaking expressed in terms of loop effects
gives a consistent picture for the pion form factor and
reaches the correct Orsay phase value (see (13)). There-
fore, an “imaginary angle” occuring when breaking isospin
symmetry is what permits to recover a quite standard and
traditional formulation for the pion form factor.

It is an interesting feature that the ω−ρ mixing, which
expresses isospin symmetry violation, appears in corre-
spondence with the ω − φ mixing, produced by the same
sort of loop effects. The specific character of the ρ − ω
mixing is the dominance of the subtraction term, which
carries most of the SU(2) symmetry breaking information
in our approach.

In order to be complete, one can estimate the modulus
of δ. In the vicinity of the ω meson mass, one has:

|tan 2δ|2 � Γ (ω → π+π−)
Γ (ρ → π+π−)

= (1.24 ± 0.17) 10−3 (21)

which corresponds to a negligible “angle” of about 1 de-
gree times i. This is indeed very small but quite compara-
ble in magnitude to the (real) ω − φ mixing angle (about
3 degrees).

6 The full mixing pattern

It follows from the Sections above that, basically, the mix-
ing pattern exhibited by the HLS model at one loop in-
volves the full triplet (ρI , ωI , φI) as soon as isospin sym-
metry is broken, as it is in real life. In most physics studies
of light meson decays it is usual to neglect isospin break-
ing effects9. A noticeable exception is the pion form factor,
because of the important ρ−ω interference structure and
of the ρ− φ interference which shows up through the de-
cay mode φ → π+π− [34,43,44]. An interesting account
of the ρ−φ mixing can also be found in the recent [39] in
connection with the φωπ coupling.

However, from the final remarks in the Section above,
one could ask oneself whether accounting only partly for
vector meson mixing effects is legitimate. Indeed, we have
just seen that the ωI − φI mixing (measured by its –
real– angle) and the ρI − ωI mixing (measured by its –
imaginary– angle) are quite comparable in magnitude.

6.1 Diagonalization procedure

When the φ field is “switched on”, the effective Lagrangian
piece quadratic in the fields changes from (3) to:

L =
1
2

{
[m2 +Πρ(s)] ρ2I + [m2 +Πω(s)] ω2

I

+[�Vm2 +Πφ(s)] φ2
I + 2ΠωIρI

(s) ρIωI

+2ΠωIφI
(s) ωIφI + 2ΠρIφI

(s)ρIφI

}
. (22)

Self-energies and transition amplitudes have been de-
fined in (7) and (15) respectively.

In order to compute amplitudes involving the physical
ρ, ω and φ mesons, (22) should be diagonalized. This gives
the physical fields as algebraic expressions in terms of the
ideal field combinations ρI , ωI and φI . In these expres-
sions the coefficients of the (linear) relations are analytic
functions of s, which basically depend on three “angles”
through relations much more complicated than (4).

One can obviously define three such “angles” corre-
sponding each to the case where one among ρI , ωI and φI

is “switched off”. As already stated above, these “angles”
are actually (analytic) functions of s and can be real, imag-
inary or complex depending on the specific s value along
the physical region.

The ω− φ mixing has been studied in isolation in [29]
and the corresponding mixing angle has been found real as
long as s is smaller than the two–kaon threshold; practi-
cally, this remains true up the φ meson mass region. The
ω − ρ mixing angle has been considered in the previous
Sections and has been found close to purely imaginary.
The third mixing angle describes mostly the ρ−φ mixing
and is named γ below; one can easily show that its imag-
inary part is certainy large in the mass region of vector
meson resonances, but a precise estimate of its real part
necessitates assumptions on the subtraction polynomials
far beyond the scope of the present paper.

9 See, however, [36] for an attempt to describe radiative de-
cays of light mesons
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M =


cos δ cosβ − sin δ cosβ sinβ

sin δ cos γ + cos δ sinβ sin γ cos δ cos γ − sin δ sinβ sin γ − cosβ sin γ

sin δ sin γ − cos δ sinβ cos γ cos δ sin γ + sin δ sinβ cos γ cosβ cos γ

 (23)

6.2 Transformation from ideal to physical fields

Therefore the general transformation we are interested in
is certainly linear and depends on three angles, each a
function of s.

Moreover, relying on the angle functions obtained by
switching off one among ρ0, ω, φ, it is likely that these
angles vary little along the mass range we are interested
in10. This leads us to approximate these three analytic
functions by three constants, over the mass range cov-
ered by the light vector and pseudoscalar mesons. This
is a somewhat violent assumption and the ability of the
model supplied with this constraint to describe experi-
mental data will teach us about its validity.

This being stated, the transformation which allows to
define the physical ρ, ω and φ fields in terms of ρI , ωI and
φI is formally a rotation and the angles are defined by
requiring the vanishing of all mixed terms, ρω, ρφ, ωφ in
(22) after the change of fields. The transformation is a real
rotation – with real angles – when analytically continued
below the two–pion threshold.

This rotation matrix can be chosen as the following
CKM–like matrix [34] which was also used in order to
study a possible glue component coupled to the η − η′
system [20,21]: (see (23) on top of the page) and we define
the requested field transformation by:ωρ

φ

 = M

ωI

ρI

φI

 ,

ωI

ρI

φI

 = M̃

ωρ
φ

 (24)

One can indeed check that M−1 = M̃ whether β, δ
and γ are real or complex. As stated above, the sine and
cosine functions here are defined through their underlying
exponential expressions and coincide with the standard
ones for real values of their arguments. We recall that
trigonometric functions satisfy all their known properties,
even for complex values of their arguments.

If the “angle” functions may become complex, one may
wonder that we may be violating hermiticity, as one could
have rather expected M−1 = M† = M̃∗. This is not true,
as can be seen by going a step prior to the approximation
by constants. In this case11, the relation fulfilled by M(s)
along the physical region can be written, using obvious
notation:

M(s+ iε)M†((s+ iε)∗) = M(s+ iε)M†(s− iε) = 1 (25)

assuming that the two lips of the physical region can be
connected by a path fully contained in the physical sheet
10 See [29] for the ω − φ mixing case in isolation
11 We denote by ∗ the simple complex conjugation of matrices
(with no transposition) and variables

and which does not cross any cut; additionally, M(s) is
real below the 2–pion threshold.

The sine and cosine functions defining M(s) are cer-
tainly algebraic functions of the transition amplitudes and
self–energies; therefore, they have essentially the same
branch point singularities (plus possible additional ones
we will not discuss). Therefore, M(s) is certainly a real
analytic function of s in a domain sketched several times
above. Then, we should have along the physical region:

M∗(s− iε) = M(s+ iε) (26)

which leads to

M(s+ iε)M̃(s+ iε) = 1 (27)

as has been inferred from (24). The precise analyticity
domain where this is valid is not easy to study in the
present case; this is, furthermore, of no consequence for
the present study12.

6.3 Radiative and vector decays of light mesons

The first important data set we shall analyze are the radia-
tive decays of light mesons. The Lagrangian which allows
us to derive their coupling constants can be written:

LWZW = KεµνρσTr [∂µ(eQAν + gVν)∂ρ(eQAσ + gVσ)P ]
(28)

where Q = Diag(2/3,−1/3,−1/3) is the quark charge ma-
trix and A is the electromagetic field. P is the pseudoscalar
field matrix and can be found in [20] with the conventions
used here. The vector field matrix is repeated here:

V =
1√
2

 (ρI + ωI)/
√

2 ρ+ K∗+

ρ− (−ρI + ωI)/
√

2 K∗0

K∗− K
∗0 −φI

 . (29)

in order to exhibit that the traditional field ρ0 is actually
the ideal isospin 1 field combination, while the physical
field associated with the ρ0 meson is ρ in (24). The coef-
ficient K in (28) is [29] K = −3/(4π2fπ).

The various V Pγ coupling constants can be derived
from (28) in a straightforward way; before rotating to
physical fields, they are given in the Appendix.

12 In order that the framework of what follows holds, one has
only to assume that this analyticity domain contains a band
along Re(s) > 4m2

π on both sides of the real axis and, con-
nectedly, a part of the semi–axis Re(s) < 4m2

π. This working
assumption does not look severe
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It should be remarked that (28) is an expression for
the VMD assumption which connects the usual anoma-
lous Wess–Zumino Lagrangian for Pγγ to its VMD part-
ner V Pγ through a common normalization factor (K).
Therefore, the treatment of V Pγ and Pγγ couplings dif-
fers only by specific symmetry breaking effects.

The physical ρPγ, ωPγ and φPγ couplings are easily
derived using these ideal couplings and the second (24), by
collecting all contributions to the same field combination
coupling. Fully developped, they are algebraically rather
complicated, even if conceptually simple. They can, how-
ever, be easily dealt with within a minimization program.

Let us illustrate one case and, for this purpose, write
down symbolically a piece of (28):

· · ·GρIγP [ρIAP ] +GωIγP [ωIAP ] +GφIγP [φIAP ] (30)

As symbolically, one can derive from (23) and (24) three
relations:

ρI = vρI
(ω)ω + vρI

(ρ)ρ+ vρI
(φ)φ (31)

and the corresponding ones for ωI and φI with, corre-
spondingly, vωI

and vφI
. The three vectors just defined

are simply the columns in (23). Rewriting (30) using (31)
and the two other parent ones, it remains only to collect
all terms contributing to [ρAP ], [ωAP ] and [φAP ] in or-
der to get the coupling constants associated with physical
vector mesons.

This allows to include all radiative decay modes in our
data sample, i.e. the possible 15 decay modes presently
all measured. Actually, the π0γγ partial width is not used
but replaced by the pion decay constant world average
value [34] fπ = 92.42 MeV.

Beside the radiative V Pγ coupling constants, the La-
grangian (28) defines also the V V P couplings. From a
practical point of view, the interesting piece derived from
(28) can be written:

L1 = − g2

8π2fπ

{
[ωIρIπ

0] + [ωIρ
+π−] + [ωIρ

−π+]
}

(32)

using obvious notations. From this, we can derive the
φωπ0 coupling which allows to include the corresponding
decay mode in our data sample. The coupling constants for
φρπ [38] is derived from fits to the e+e− → π+π−π0 cross
section; the most recent fit value [38] gφρπ = 0.815±0.021
GeV−1 is seemingly well established. Its parent ωρπ is
subject to more controversy [39–42] and the reported val-
ues range between 11.7 ± 0.5 GeV−1 [39] for the smallest
to 16.1 ± 0.4 GeV−1 for the largest, with a prefered value
[40] around 14.3 GeV−1; until clarification, it seems more
secure to leave this information outside fits and simply
compare with our predictions.

Finally the relative phase of the coupling constants
φωπ0 and ωρπ comes from a fit to e+e− → ωπ0; the most
recent estimate [42] is −49◦ ±7◦ ±1◦ and will be included
into the data sample we shall fit.

6.4 Information from e+e−, π+π− and KK decays

Concerning the decay of vector mesons to e+e−, the rele-
vant Lagrangian piece is [20]:

Lem = −aef2
πg

[
ρI +

1
3
ωI + �V

√
2

3
φI

]
·A (33)

which depends on the breaking parameter [19,18,20] �V .
It allows to derive the corresponding couplings for the
physical fields ρ, ω and φ using (24) above.

The other HLS Lagrangian piece given in (6) provides
the coupling constants of the physical φ meson to both
K+K− and KLKS final state. Finally, the π+π− term in
(6) gives the ωπ+π− and φπ+π− couplings which allows
us to include these partial widths inside our data sample.

Therefore, in addition to the 14 modes, the φ → ωπ0

decay width and its phase relative to ωρπ, and the φρπ
coupling as stated in the section above, we can add 7 more
decay modes to our working data sample (ρ/ω/φ → e+e−,
φ → K+K−/KLKS , ω/φ → π+π−).

As clear from the above Sections dealing with the ρ−
ω mixing, the phase of the ω term (denoted above ϕ)
relative to the ρ term carries as much physics information
as the ω → π+π− partial width (one gives the phase of
the breaking term, the other its modulus). Referring to
the Review of Particle Properties [34], there is no reported
average value and the latest fit which could have produced
such information did not include this measurement [23],
therefore, we shall use the latest published fit value [26]
104.7◦ ± 4.1◦ as reference data.

There are however, former fit values for the Orsay
phase which give information on its model dependence
[45–47]. The reference value we choose is somewhat me-
dian and has the virtue to reproduce the threshold be-
havior predicted by Chiral Perturbation Theory with a
good accuracy [26]; however, from the other references
just quoted, one might conclude that systematic errors
of about 10◦ are not unlikely.

On the other hand, the fit of the φ → π+π− rate has
been done several times [34,43,44], but only one value for
the phase is currently reported in the literature [43] and
provides valuable physics information. The reported value
is ψ = −34◦±4◦; this corresponds to a definition where the
φ inverse propagator is writtenm2

φ−s−imφΓφ, opposite in
sign to the definition currently used (see Sect. 5). In order
to recover consistency with the rest of the information we
use, a minus sign should be absorbed in this phase which
thus becomes ψ = 146◦ ± 4◦.

These phases are the phases of the following quantities:

FV = fV γGV π+π− , V = ρ, ω, φ (34)

which are allowed to be complex for all vector mesons.
Therefore, taking into account these 2 additional

phases, our data sample contains 26 physics quantities;
indeed, all modes reported above, except for π0 → γγ
replaced by the world average value for fπ, the contro-
versial coupling gωρπ, to which we shall nevertheless com-
pare, as well as the phase of Gρππ (unavoidably generated
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by isospin breaking) which should be (and is found) very
small.

7 Fitting the data sample

We have fit the set of data listed above within the model
presented in the above Section concerning the full mixing
pattern and in the Appendix concerning the rest of the
parameter set.

Concerning the data, all have been taken from the last
issue of the Review of Particle Properties (RPP) [34]13.
For data which have no existing entry in the RPP, we have
chosen the latest reference. Therefore, among all physics
quantities which could be accessed by the model we
present, only the major modes K∗ → Kπ and ρ → ππ
are left aside, as already stated.

7.1 Analysis of the fit conditions

In this Section, we aim at making clear, which are the
parameters we use and the level of freedom allowed by
their existing measured value; afterwards, we describe the
various fit strategies we have followed.

The unbroken HLS model [14] basically depends on a
very few parameters which are not predicted and should
be extracted from data. Beside the unit electric charge
e which is certainly well determined, these are the uni-
versal vector meson coupling g, the pion decay constant
fπ = 92.42 MeV and a, a dimensionless parameter spe-
cific of the HLS model. In standard VMD models, one has
a = 2, however within the HLS model this condition can
be relaxed; in this case, fits to experimental data [57,20,
21,23] indicate that a = 2.3 ÷ 2.5 should preferred. This
merely means that a small coupling γπ+π− survives be-
side vector mesons exchanges.

Concerning symmetry breaking parameters, previous
studies [20,21,29] have already reduced the fit freedom by
relating, and/or fixing the breaking parameters specific to
the pseudoscalar sector: we have already Z = [fπ/fK ]2 =
2/3, as a consequence of FK(0) = 1 [19,18]; it has been
checked that the set of radiative and leptonic decays favors
this value unambiguously [20]. However, in view of the new
result [6] on this subject, we shall make a separate study
of this parameter.

As all other models, the HLS model requires mixing
in the η/η′ sector, however, the two parameters involved
there (the mixing angle θP and the nonet symmetry break-
ing parameter x) are algebraically related by the HLS phe-
nomenology [21] (see (A1)) with a high accuracy.

In the vector sector of the HLS model, two breaking
parameters, denoted here �V and �T , seem unavoidable

13 An update of the Particle Data Table can be found at
http://pdg.lbl.gov; some minor modifications have been made
to the decay rates considered in the present paper. They do
not affect our analysis

and free, even if �V might be fixed sometime, when vector
meson masses would be clearly understood14 [18,20,29].

This being stated, there remain 3 complex “angles”
(6 parameters) which are the body of the present study.
Within some approximations (mostly, neglecting anoma-
lous loops), one has already noted some clear guesses:
one should be mostly real (it corresponds to the standard
ω − φ mixing angle [29]), another close to purely imagi-
nary (it corresponds to the ω−ρ mixing angle examined in
Sects. 3–5). Of course, when going to numerical analysis,
the validity of these guesses can be controlled. Moreover,
the expectations just referred to have been established
above or elsewhere [29] by considering mixing patterns
in isolation; therefore, slight departures from these expec-
tations are not unlikely.
i/ As first attempt, we have left these 6 parameters free
in the fit. We reached the good fit quality of χ2/dof =
13.41/15 (26 data, 11 parameters) which corresponds to a
57% probability. The fit correlation matrix was observed
to exhibit large correlations between fit values for β and
γ and between Re(γ) and Im(γ); as this could well in-
fluence the fit procedure, we have looked for equivalent
parametrizations. The most appropriate we found was to
use Re(β), Im(β), Im(γ) and a parameter k defined by
Re(γ)=k Im(γ). In this case we improved the fit quality
to χ2/dof = 12.59/15, corresponding to a fit probability
of 63%. The fit then returned k = −0.23+0.40

−0.60, which indi-
cates that the angle γ can be chosen imaginary (k = 0);
the global fit assuming this constraint is given in the first
data column of Table 1.
ii/ We have explored several strategies in order to reduce
the freedom in fits by fixing several subsets of parameters.
The most interesting results, with reasonable probabilities
(above the percent level), are given in the second and third
data columns in Table 1. The former relies on the obser-
vation that the ω − φ mixing angle is well fitted real [29];
this leads to try requesting Im[β]= 0 in order to lessen
the fit freedom. The latter relies on the observation that
both Re[γ] and Re[δ], basically related with the mixing
of ω and φ to ρ, are quite generally yielded small com-
pared to the corresponding real parts; this is true in the
general framework under examination and also in studies
were these mixing phenomena were considered in isola-
tion. Even if somewhat brutal, these approximations lead
both to quite reasonable fit quality.
iii/ We have also considered that there can be a functional
relation between some “angles”. From their expressions in
terms of pseudoscalar meson loops, one might guess that
the “angles” γ and δ could be functionally related. As we
are dealing with slowly varying functions over the range
of interest, we have tried requesting:

γ = (µ1 + iµ2) δ . (35)

14 We mean by this, that the relation between theoretical
masses as they occur in Lagrangians and the corresponding
measured quantities is unclear for broad objects like ρ or K∗.
This problem is certainly related with the apparent difficulty
to accomodate the major decay modes of K∗ and ρ and all
other decay modes simultaneously within the HLS framework
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Table 1. Fit results under various strategies. Parameter values written boldface means that they are not
allowed to vary; this translates mathematically the fit condition given on the top of the Table

Fixing Angle ρ − φ Imaginary only ω − φ Real only ω − ρ and ρ − φ ω − ρ and ρ − φ

Properties Imaginary proportional

g 5.651 ± 0.017 5.652 ± 0.017 5.641 ± 0.017 5.652 ± 0.017
θP [deg.] –10.33 ± 0.20 –10.32 ± 0.20 –10.33 ± 0.20 –10.34 ± 0.20
a [HLS] 2.517 ± 0.035 2.523 ± 0.034 2.485 ± 0.033 2.513 ± 0.035

�V 1.343 ± 0.021 1.337 ± 0.021 1.366 ± 0.021 1.346 ± 0.021
�T 1.231 ± 0.052 1.230 ± 0.052 1.232 ± 0.052 1.230 ± 0.052

Re[β] −0.058 ± 0.003 −0.061 ± 0.002 −0.054 ± 0.003 −0.056 ± 0.003
Im[β] −0.020 ± 0.005 0. −0.028 ± 0.003 −0.029 ± 0.002

Re[δ] (0.52 ± 0.18) 10−2 (0.54 ± 0.19) 10−2 0. (0.55 ± 0.19) 10−2

Im[δ] (−0.29 ± 0.02) 10−1 (−0.29 ± 0.02) 10−1 (−0.31 ± 0.02) 10−1 (−0.29 ± 0.02) 10−1

Re[γ] 0. (−0.57 ± 0.15) 10−3 0. (.031 ± .005) Re[δ]
Im[γ] (−0.96 ± 0.18) 10−3 (−1.16 ± 0.16) 10−3 (−1.06 ± 0.18) 10−3 (.031 ± .005) Im[δ]

χ2/dof 12.88/16 17.06/16 20.94/17 12.59/16
Probability 63% 38% 23% 70%

It happens that this relation is well accepted by the
data. The fit returned µ1 = (0.030+0.007

−0.006) and µ2 =
(0.011+0.131

−0.114) 10−1 with χ2/dof = 12.58/15 (probability
63%). Therefore, requiring the condition in (35) is cer-
tainly justified and additionally, one gets phenomenolog-
ical motivation to require µ2 = 0 from start. The corre-
sponding fit results are displayed in the fourth data col-
umn of Table 1. The fit quality reached can hardly be
better.

Finally, an additional fit (not shown) assuming
Im[β] = 0 and leaving free µ1 and µ2 has been performed
in order to test the stability of other fit parameters, by re-
quiring a condition expected if one interprets β as strictly
equivalent to the ω − φ mixing angle in isolation. The
result practically coincides with the second data column
in Table 1, including its fit quality, and returns µ1 =
(0.354 ± 0.044) 10−1 and µ2 = (−0.270 ± 0.040) 10−1.
The various contributions to the χ2 implies that this fit
and the second data column in Table 1 give the same de-
scription of the data with the same probability.
iv/ From the results given in Table 1, it is clear that most
parameter values do not depend sensitively on the fit strat-
egy considered. As all fit qualities are especially favorable,
no strategy can be privileged. The single parameter which
seems floating is Re[γ] which cannot be better constrained
before improving the accuracy of existing information for
φ → ππ in modulus and phase, and/or improving the
phase of the φωπ coupling constant. Whether γ could be
removed as a whole has been considered with a negative
answer. Indeed, performing a fit with γ = 0 leads to a
quality which becomes really poor (χ2/dof = 36.34/17,
probability 0.4%).

It should be stressed that the information prominently
affected by isospin symmetry breaking represents 6 mea-
surements (ω/φ → ππ, φ → ωπ in modulus and phase),
which requires in our approach 4 parameters (δ, µ1 and

µ2/Im[β]). Therefore, even in this sector, the set of param-
eters is reasonably constrained and only waits for more
accurate data.

7.2 Analysis of fit parameter values

As first remark, it is clear that all fit parameters not con-
nected with vector meson mixing, (the five first lines in
Table 1), are quite stable and their values compare well
with previous attempts along the present lines [20,29,21].
We note, however, the correlation between �V and a which
reaches −90%; this correlation is purely numerical and re-
flects that the dependence upon �V within the set of cou-
pling constants is actually a dependence upon the product
a�V .

The value obtained for the pseudoscalar mixing angle
has been discussed in [21] and agrees quite well with recent
estimates from lattice QCD [48]. It has been shown in [21]
that this angle is (algebraically) related with the mixing
angle θ8 in favor within the ChPT community by a factor
which can be predicted close to 2.

As stated above, the mixing “angle” β can be consid-
ered as intimately associated with ω−φ mixing. It should
be noted that the value of Re(β) varies little when con-
straints are put on other parameters. This real part is a
30σ effect and corresponds to an ω − φ mixing angle of
−(3.2 ÷ 3.5)◦ ± 0.11◦, that is smaller than the ideal mix-
ing angle, as found in [20,29]. These remarks allow to con-
clude that introducing isospin symmetry breaking, as we
propose does not affect sensitively the sector of radiative
and leptonic decays. For most parameters not intimately
related with isospin symmetry breaking, this follows ex-
pectations (see the first five lines in Table 1); however,
because of the “rotation” matrix structure, it was not ob-
vious that Re[β] could not shift by a few degrees, pushing
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Table 2. Reconstructed Branching fractions for radiative and leptonic decays using the various fit strategies. The last
column displays the recommended values from the Review of Particle Properties [34]. The last line gives a reminder
of the fit quality given in Table 1

Fixing Angle ρ − φ Imaginary only ω − φ Real only ω − ρ and ρ − φ ω − ρ and ρ − φ PDG
Properties Imaginary proportional

ρ → π0γ [×104] 5.36 ± 0.12 5.37 ± 0.13 5.18 ± 0.10 5.37 ± 0.13 6.8 ± 1.7
ρ → π±γ [×104] 5.13 ± 0.10 5.13 ± 0.10 5.10 ± 0.10 5.13 ± 0.10 4.5 ± 0.5
ρ → ηγ [×104] 3.18 ± 0.08 3.18 ± 0.08 3.15 ± 0.08 3.18 ± 0.08 2.4+0.8

−0.9

η′ → ργ [×102] 33.91 ± 3.16 33.92 ± 3.13 33.52 ± 3.04 33.93 ± 3.16 30.2 ± 1.3

K∗± → K±γ[×104] 9.89 ± 1.01 9.78 ± 1.01 9.85 ± 1.03 9.89 ± 1.01 9.9 ± 0.9
K∗0 → K0γ[×103] 2.31 ± 0.33 2.31 ± 0.32 2.30 ± 0.32 2.31 ± 0.33 2.3 ± 0.2

ω → π0γ [×102] 8.49 ± 0.10 8.49 ± 0.10 8.48 ± 0.11 8.49 ± 0.10 8.5 ± 0.5
ω → ηγ [×104] 7.72 ± 0.15 7.74 ± 0.16 7.86 ± 0.14 7.69 ± 0.15 6.5 ± 1.0
η′ → ωγ [×102] 2.79 ± 0.26 2.77 ± 0.26 2.89 ± 0.26 2.79 ± 0.26 3.03 ± 0.31

φ → π0γ [×103] 1.37 ± 0.09 1.36 ± 0.09 1.38 ± 0.09 1.38 ± 0.09 1.26 ± 0.10
φ → ηγ [×102] 1.29 ± 0.02 1.28 ± 0.02 1.29 ± 0.02 1.29 ± 0.02 1.297 ± 0.033
φ → η′γ [×104] 0.58 ± 0.02 0.59 ± 0.02 0.58 ± 0.02 0.58 ± 0.02 0.67+0.35

−0.31

η → γγ [×102] 39.45 ± 3.74 39.43 ± 3.74 39.32 ± 4.02 39.45 ± 3.74 39.33 ± 0.25
η′ → γγ [×102] 2.13 ± 0.20 2.13 ± 0.20 2.18 ± 0.19 2.13 ± 0.20 2.12 ± 0.14

ρ → e+e− [×105] 4.70 ± 0.16 4.73 ± 0.16 4.54 ± 0.15 4.69 ± 0.16 4.49 ± 0.22
ω → e+e− [×105] 6.96 ± 0.21 6.94 ± 0.21 7.06 ± 0.22 6.97 ± 0.21 7.07 ± 0.19
φ → e+e−[×104] 2.96 ± 0.04 2.96 ± 0.04 2.96 ± 0.04 2.96 ± 0.04 2.91 ± 0.07

χ2/dof 12.88/16 17.06/16 20.94/17 12.59/16
Probability 63% 38% 23% 70%

the ω−φ mixing angle slightly above its ideal value. This
is not observed, whatever the fit strategy.

All uncertainties in the fits are connected mainly with
the values for Im(β), Re(γ) and Re(δ). This reflects that,
even though valuable, most isospin breaking data are still
of rather poor accuracy.

7.3 Reconstruction of physics quantities

The fit parameter values allow to reconstruct branching
fractions, coupling constants and phase factors as pre-
dicted by our model. Dealing with errors is done by Monte
Carlo methods using the full covariance matrix of each fit
in order to account properly for correlations. Let us de-
note Vij the covariance matrix element for parameters xi

and xj , by λα its eigenvalues and by aα
i the ith component

of the αth normalized eigenvector; then any measured pa-
rameter xi can be considered as a random variable given
by:

xi = x0
i +

n∑
α=1

εα
√
λα a

α
i (36)

where x0
i is the central value returned by the fit and {εα,

α = 1, · · ·n} is a set of independent gaussian random vari-
ables of zero mean and unit standard deviation (

〈
εαεβ

〉
=

δαβ).

The fit quantities were the coupling constants for each
process. These have been derived from the accepted
branching fractions [34] – taking into account their ac-
curacy – and assuming that the full widths and masses of
mesons are random variables.

In order to reconstruct the physics (measured) quanti-
ties, in addition to considering the fit parameters as cor-
related random variables, we have assumed the mass and
width of each vector meson as independent random vari-
ables with standard deviation given by the accepted errors
[34]; instead, all masses of pseudoscalar mesons were con-
sidered as fixed, except for the η′ meson. Finally, for the ρ
meson (charged and neutral) we have considered the value
given in the τ/e+e− entry of the RPP [34] for its mass and
width. We thus follow the conclusion of the ALEPH Col-
laboration who saw no difference for these parameters –
within errors – between the charged and neutral modes
[50].

7.3.1 Radiative and leptonic decay modes

We give in Table 2 the reconstructed branching fractions
for radiative and leptonic decays together with the recom-
mended values [34].

It is interesting to compare these reconstructed values
with previous fits done using the model we present, with-
out introducing isospin symmetry breaking (see Table III
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and IV in [20] and Table 2 in [21], where nonet symmetry
breaking and the pseudoscalar mixing angle have been al-
gebraically related). All changes are actually tiny, confirm-
ing that breaking of isospin symmetry contributes little in
this realm. However, two small changes can be noticed.

The first is that BR(ρ0 → π0γ) becomes larger than
BR(ρ± → π±γ) by 4.7% and the predicted branching frac-
tion BR(φ → π0γ) increases by 8%. These are clearly con-
sequences of breaking isospin symmetry. Otherwise, what-
ever the additional conditions stated, the general agree-
ment of the reconstructed physics quantities with the data
collected and averaged in the RPP can hardly be better.

Among the recent changes in the RPP, one should no-
tice the branching fraction for φ → η′γ which has now a
central value in much better agreement with our model
prediction. On the other hand, some new measurements
have been recently reported which have not influenced the
RPP recommended values (neither our fits) and might be
commented.

First, the new measurement Br(ρ0 → e+e−) = (4.67±
0.15) 10−5 reported by CMD-2 [51] remains in good agree-
ment with our fit values. The second new measurement
[52] Br(ρ → ηγ) = (3.28 ± 0.36 ± 0.24) 10−4 has a higher
central value in better agreemement with our recon-
structed value, as for Br(φ → ηγ) = (1.287 ± 0.013 ±
0.063) 10−2. The third new measurement [52] Br(ω →
ηγ) = (5.10 ± 0.72 ± 0.34) 10−4 is in relatively poorer
agreement with our predictions than the RPP mean value
[34].

The SND Collaboration has also published new re-
sults on ηγ decays of vector mesons [53–55]; the branch-
ing fractions reported are in good correspondence with
our predictions. However, as for the CMD-2 result re-
ported above, the new SND data for Br(ω → ηγ) =
(4.62±0.71±0.18) 10−4 might indicate that our prediction
for this mode is slightly too large.

As the predictions for Br(ω → ηγ) are alike whatever
the conditions on the model, this (possible) 2σ disagree-
ment could point towards a mass dependence of the mixing
“angles”.

Before closing this Section, it is of relevance to com-
ment on a recent claim [56] that isospin symmetry break-
ing might be much larger in ρ0 → π0γ than anywhere
else. From what has just been commented, it is clear that
a � 5% effect of isospin symmetry breaking is well ac-
cepted by all data, the former [34,57] and the recent SND
datum as well (Br(ρ0 → π0γ) = (4.3 ± 2.2 ± 0.04) 10−2)
[58]. We have checked that the central value claimed by
[56] (about a factor of 2 in rates) cannot be reproduced in
consistency with the rest of radiative decays.

7.3.2 ππ decay modes

For the φ and ω decays to ππ, we have used the recom-
mended branching fractions [34] and the phases fit resp. by
[43] and [26]. Table 2 shows that they are well reproduced
by any of our fits. Taking into account the uncertainties
already quoted for the Orsay phase, we even cannot rule
out the solution given by the third data column.

The Collaboration CMD–2 has recently provided [23]
Br(ω → ππ) = (1.32 ± 0.23)% significantly smaller than
the recommended value (2.21 ± 0.30)% we have used, and
Br(φ → ππ) = (1.60 ± 0.49) 10−4 about 2σ larger than
the RPP value (0.75±0.14) 10−4. No phase measurement
has been correspondingly reported.

It is worth commenting on the possible effects of these
new measurements. These have been examined within the
framework of our preferred fit strategy (the one reported
in the fourth data column of Table 1).

We have first changed Br(ω → ππ) to the new CMD–2
datum. The best fit obtained provides χ2/dof = 13.68/16
(probability 62%). The parameter values and errors are
the same as in the fit reported in Table 1, except that
Imδ yields a reduced magnitude (−0.029 ± 0.002 becomes
−0.023 ± 0.002); on the other, hand µ1 changes from
0.031 ± 0.005 to 0.020 ± 0.007. Finally, the contribution
of the Orsay phase to the global χ2 is about 0.12 and
does not change, showing that the datum used remains
consistent with the rest.

Having restored Br(ω → ππ) to the RPP recom-
mended value, we have changed the datum for Br(φ → ππ)
to the new result of CMD–2. The single significant change
with respect to Table 1 is the value of µ1 (0.031 ± 0.005
becomes 0.017 ± 0.001) and the fit returned χ2/dof =
13.44/16 (probability 64%).

Finally performing both changes simultaneously pro-
vides a fit with χ2/dof = 14.83/16 (probability 54%) with
results merging the changes mentioned just above.

Therefore, even if some uncertainty remains for the val-
ues of the γ and δ angles, the model exhibits enough flex-
ibility in order to accomodate significant changes in some
crucial data. Actually, the two modes just commented de-
termine almost solely the magnitude of isospin symmetry
breaking.

It should also be noted that the changes just men-
tioned in the branching fractions do not give rise to incon-
sistencies with the phases of the corresponding coupling
constants we have used, which thus look more firmly es-
tablished.

7.3.3 V V P couplings and 3π decays

In all fit strategies and even by changing to new data as
reported just above, the information concerning the V V P
processes is remarkably stable.

One should thus note the nice agreement with the data
reported by the SND Collaboration on the φ → ωπ0 pro-
cess [39,42] both in branching fraction and phase.

The SND datum [38] for |gφρπ| is also reproduced with
good accuracy. As the phase of this coupling constant is
unfortunately not reported we have no reference datum to
which our prediction could be compared. Such informa-
tion is in principle accessible from fit to e+e− → π+π−π0

data [38], but the existence of a (complex) non resonant
term15 in the amplitude renders this extraction hasardous.
15 This term might account for the box anomaly, but also for
high mass resonances and this last effect seems hard to model
in both modulus and phase
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Table 3. Reconstructed Branching fractions from various fit strategies, cont’d. The last column displays the recom-
mended values from the Review of Particle Properties [34]. The last line reminds the global fit quality given in Table 1.
The datum indicated by (∗) has been corrected in order to absorb a minus sign (see text)

Fixing Angle ρ − φ Imaginary only ω − φ Real only ω − ρ and ρ − φ ω − ρ and ρ − φ PDG
Properties Imaginary proportional Reference

φ → K+K−[×102] 50.25 ± 0.72 50.26 ± 0.71 50.24 ± 0.72 50.22 ± 0.73 49.2 ± 0.7
φ → K0

SK0
L[×102] 32.95 ± 0.47 32.95 ± 0.47 32.94 ± 0.48 32.92 ± 0.48 33.8 ± 0.6

ω → π+π−[×102] 2.23 ± 0.30 2.19 ± 0.29 2.32 ± 0.31 2.26 ± 0.30 2.21 ± 0.30
phase of [57]
gωπ+π− [degr] 103.50 ± 4.02 106.3 ± 3.81 92.34 ± 0.69 103.40 ± 3.88 104.7 ± 4.1

φ → π+π−[×105] 7.93 ± 1.40 8.15 ± 1.45 7.60 ± 1.24 7.70 ± 1.43 7.5 ± 1.4
phase of [43]
gφπ+π− [degr] 146.30 ± 3.95 147.5 ± 4.09 146.0 ± 3.75 145.95 ± 3.93 146.0 ± 4.0(∗)

φ → ωπ0[×105] 4.10 ± 0.48 3.62 ± 0.41 4.24 ± 0.49 4.18 ± 0.49 4.8 ± 2.0
phase of [42]
gφωπ0/gωρπ0 [degr] −50.90 ± 3.63 −61.91 ± 3.05 −52.38 ± 3.27 −47.92 ± 3.52 −49 ± 7.07

coupling [38]
gφρπ0 GeV−1 0.802 ± 0.026 0.799 ± 0.026 0.803 ± 0.026 0.803 ± 0.026 0.815 ± 0.021
phase of
gφρπ0/gωρπ0 [degr] 19.28 ± 4.71 0.22 ± 0.11 27.98 ± 3.53 23.98 ± 3.47 −
coupling (see text)
gωρπ0 GeV−1 13.14 ± 0.09 13.14 ± 0.09 13.09 ± 0.081 13.14 ± 0.09 11.7 ÷ 16.1

χ2/dof 12.88/16 17.06/16 20.94/17 12.59/16
Probability 63% 38% 23% 70%

It could also be accessed from e+e− → ωπ0 data but noth-
ing is reported in this respect [41]. Such information, if
reliable, could have been valuable as it could dismiss at
least one of the fit strategies (see Table 3).

Finally, the coupling constant gρωπ is found consistent
with real and its value falls indeed in the expected range
[41]. It is found slightly but significantly smaller than the
value prefered by [40] (14.3 GeV−1). Its value is however
extremely stable in all fits we attempted and looks ac-
curate; it should be noted that this parameter is only
marginally influenced by isospin symmetry breaking and
follows essentially from the set of radiative and leptonic
decays.

The decay rates for ω/φ → π+π−π0 are, of course,
determined by g(φ/ω)ρπ coupling constants and a model
for the ρ propagator and the ρ → ππ decay amplitude.
Therefore, our model can be considered as giving a good
description of these, up to effects related with modelling
the ρ meson propagator for phenomenological purposes.

7.3.4 φ → KK decay modes

In all attempts we have performed, a non–negligible con-
tribution to the χ2 comes from both φ → KK decay
modes. Whatever the strategy, the charged mode con-
tributes to the χ2 by 2.2 and the neutral mode by 1.9.
However, when taking into account all sources of errors,

Table 1, clearly shows that the disagreement with reported
data is not really dramatic.

On the other hand, it is admitted that model predic-
tions for φ → K+K− have to be corrected for Coulomb
interactions [59,38], which was not done above. It has been
recently shown [60] that there is a slight discrepancy be-
tween the branching fractions for charged and neutral de-
cay modes (about 2σ) and that, accounting for Coulomb
interactions among the (very) slow charged kaons, in-
creases this discrepancy to 3σ.

Aware of this question, we have redone our fits by re-
moving φ → K+K− from the fit data set; in this case
we reached a fit quality of χ2/dof = 9.04/15 (88% prob-
ability). For symmetry, we have tried removing instead
φ → K0K0; we reached a fit quality of χ2/dof = 9.94/15
(82% probability). Trying to correct the model coupling
constant as indicated in [59] only degraded the nominal
fit quality. Therefore, we confirm in an independent way
the problem raised by A. Bramon et al. [60].

In order to identify a (possible) faulty measurement,
we have redone our fits by removing both φ modes from
our fits. Focusing still on the model as given in the fourth
data column in Table 1, we reach a fit quality of χ2/dof =
8.42/14 (probability 87%). What is interesting here is to
consider the χ2 distance of the measurements to what is
predicted by our model by relying only on the rest of the
data (24 measurements). We got χ2 = 3.76 for the charged
mode (a 2σ effect as pointed out by [60]), while the neutral
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mode yields χ2 = 0.90. When correcting the prediction for
the charged mode by the Coulomb factor its χ2 distance
increased to χ2 = 16.6, a 4σ deviation.

Therefore, we confirm the issue raised by Bramon et
al. [60], with an additional information: if one among φ →
K+K− and φ → K0K0 is faulty, it should be the former,
which seems overestimated16. Indeed, if we correct the
model coupling constants in order to account for Coulomb
correction (1.042 for the rate), the global fit quality
sharply degrades (χ2/dof = 21.40/16, probability 16%).

7.4 The value of fK/fπ

In all fits referred to above we have fixed the ratio fK/fπ

at the central value recommended par the Particle Data
Group [34] (fK/fπ = 1.226 ± 0.012) and neglected its
error. This corresponds to using [fπ/fK ]2 = Z = 2/3.

Instead of leaving it fixed, we allowed this ratio to vary
in all conditions described in Sect. 7.1 and reported in Ta-
ble 1. The best fits thus obtained have improved χ2 with
respect to Table 1 by only � 0.5 and have one less de-
gree of freedom. The different values obtained for Z never
differ by more than a per mil and can be summarized by:

fK

fπ
= 1.229 ± 0.008 (37)

which compares quite well with the PDG reference value
for this datum recalled above. This result is at 2.8σ of the
recent value [6] extracted from Ke3 decay, neutron de-
cay and nuclear Fermi transition data (fK/fπ = 1.189 ±
0.012). We have introduced, as fixed, the corresponding
value for Z = 0.71 in our fits. We never reached a prob-
ability greater than 0.5%. Looking at the various contri-
butions to the global χ2, we found that it is the whole
φ sector which is the most affected. Considering the dis-
cussion in [6] about the inputs which lead to this new
value for fK/fπ, one might think that the origin of this
inconsistency is in the nuclear or in the free neutron beta
decay datum used. We conclude herefrom that the tradi-
tional PDG value for fK/fπ ratio is sharply favored by the
whole set of radiative decays and an improved fit value is
given by (37).

8 Conclusion

In previous work done with other coauthors, we focused
on introducing SU(3) symmetry breaking and nonet sym-
metry breaking within the framework of the Hidden Local
Symmetry Model [20]. We introduced also the ω−φ mix-
ing, generated by kaon loops effects, which does not cor-
respond to any symmetry breakdown [20,29]. This frame-

16 It is interesting to note that systematics on φ → K+K−

are harder to estimate than those on φ → KLKS , because
the modelling of nuclear interactions of low energy charged
kaons is not still fully satisfactory. Instead, the signature of
KS → π+π− is much cleaner

work, supplemented with these symmetry breaking mech-
anisms has been shown to provide quite a successful pic-
ture of all radiative and leptonic decays of light vector
and pseudoscalar mesons accessible from inside the VMD
framework. We have also shown that this framework was
able to explain the main features of the η−η′ mixing phe-
nomenon [21] in perfect agreement with all expectations of
Chiral Perturbation Theory (ChPT); this led us to get a
relation between the pseudoscalar (wave function) mixing
angle, basically at work in VMD modelling (� −10◦), and
the ChPT mixing angle recently renamed θ8 (� −20◦).

In the present work, we have shown that isospin sym-
metry breaking can be accounted for within an effective
HLS model by means of – essentially – kaon loop effects. In
contrast with the case of ωI −φI mixing where both kaon
loops (charged and neutral) come additively, in the case
of ρI −ωI and ρI −φI mixings, it is their difference which
occurs. Relying on the properties of Dispersion Relations,
this difference should be essentially a polynomial in s with
real coefficients, which is additionally constrained to van-
ish at s = 0. We argued that this polynomial should not
be identically zero, at least to account for isospin sym-
metry breaking in the pseudoscalar sector. Indeed, when
isospin symmetry is not broken, it is quite legitimate to
choose the same renormalization conditions for both the
K+K− and K0K

0
loops; instead, when isospin symmetry

is broken, this requirement has certainly to be relaxed.
Other mechanisms than kaon loops could also be imag-

ined. If they play by generating ρI −ωI and ρI −φI tran-
sition amplitudes, the angle formalism we presented here
still applies without any change. However, we have shown
on the pion form factor, that all properties expected from
isospin symmetry breaking are strikingly reproduced by
the kaon loop mechanism we advocate. We then naturally
recover all properties traditionally expected from the ρ−ω
mixing amplitude: ΠρIωI

(s) is practically real in the ρ−ω
peak invariant mass region, it is s–dependent and vanishes
at the chiral point.

Moreover, we were able to derive the pion form factor
in the Orsay phase formulation from our (effective) bro-
ken Lagrangian; the Orsay phase was shown to be strictly
equivalent to a “rotation” by a complex angle, addition-
ally close to purely imaginary.

Using this framework, it has been possible to extend
our breaking scheme in order to include isospin symmetry
breaking. Actually, taking into account the various orders
of magnitude of the breaking parameters and of the ω−φ
mixing, it is mathematically safer to define a full mixing
scheme involving the triplet ρ, ω, φ as a whole. This leads
us to define a priori a s–dependent rotation matrix, de-
pending on three angles which can be real or complex.

We have thus formulated an effective Lagrangian
model which is able to account quite successfully for prac-
tically all physics quantities related to VMD: radiative de-
cays (V Pγ, Pγγ), leptonic decays (V e+e−), V V P
couplings, and all decays related with isospin symmetry
breaking (ω/φ → ππ, φ → ωπ) in modulus and in phase.
This represents 26 physics quantities all well recon-
structed.
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It should be noted that all results we previously ob-
tained without introducing isospin symmetry breaking are
confirmed, including the η − η′ and ω − φ mixing angles.
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Appendices

In order to be self–contained, we collect in this Appendix
formulae for coupling constants and partial widths; we do
not insist much on how U(3)/SU(3) breaking is performed
in the present paper, as it is the matter of already pub-
lished work [18,29,20,21] to which the interested reader
can refer.

A Details of the Breaking Model

Our framework is the HLS model and the SU(3) break-
ing procedure we follow has been defined first in [19,18].
Focusing on the anomalous sector [15], all details can be
found in [20,29,21]. Here, we mainly recall breaking pa-
rameter properties or values of concern for the present
study.

Breaking the non–anomalous sector of the HLS model
[14,19,18] introduces a breaking parameter Z strongly as-
sociated with the pseudoscalar (PS) sector; it is not a free
parameter but fulfills Z = [fπ/fK ]2 = 2/3.

Concerning the PS sector, we have a priori 2 addi-
tional parameters. The first is named x and its departure
from 1 measures breaking of nonet symmetry in the PS
sector. Another parameter affecting the PS sector is the
PS mixing angle θP (which describes the η/η′ sector in
terms of mixtures of singlet and octet components) or
δP (when one prefers referring to departures from ide-
ally mixed states). Both angles are used and are trivially
related to each other [20].

When studying the connection between VMD, the
Wess–Zumino–Witten Lagrangian and Chiral Perturba-
tion Theory, it has been found [21] that the PS mixing
angle θP and the nonet symmetry breaking parameter x
fulfill:

tan θP =
√

2
Z − 1
2Z + 1

x (A1)

with high accuracy (in [21], this relation is given in terms
of z = 1/Z). Preliminary fits have shown that this re-
lation is still satisfied in the present framework without

any degradation; thus it is assumed. We remind that the
mixing angle θP relates to the (now) more usual ChPT
mixing angle θ8 by [21] θ8 � 2θP . Therefore, concerning
the PS sector, our model depends only on one free pa-
rameter which can be either of θP or x. We choose the
former.

Associated with the vector sector and, more precisely
with vector meson masses, another breaking parameter
occurs named here �V ; it relates with another breaking
parameter (cV ) [19,18] by �V = (1 + cV )2. It is a priori
subject to fit, and thus free, as the connection between
reported vector meson masses [34] and the corresponding
masses occuring in the HLS Lagrangian is unclear [29].

Concerning vector mesons, another breaking parame-
ter is necessary in order to account for the anomalous K∗
sector; it is named [20,29] �T . It was first considered as
somewhat ad hoc [20]; however, it has been shown [29] that
it strictly corresponds within VMD to a breaking parame-
ter defined independently by G. Morpurgo [49] within the
non–relativistic quark model and found in agreement with
low energy QCD. If the partial width value for K∗± →
K±γ is confirmed, this parameter looks unavoidable
within VMD; its precise meaning is still to be understood
[29].

A possible break up of nonet symmetry in the vector
sector has been found previously undetectable (the pa-
rameter y defined and studied in [29]). Preliminary fits in
the present study confirmed this conclusion and, therefore,
the parameter y was set to 1 definitely.

Thus, concerning SU(3) symmetry breaking, the HLS
vector sector depends already on 2 free parameters �V and
�T , independently of mixing among the ideal field com-
binations ωI , φI and ρI associated with neutral vector
mesons. This last point is the actual subject of the present
paper.

B Basic Coupling Constants and Patial widths

We give in this Section all coupling constants which cannot
be trivially read off the Lagrangian pieces given in the
main text.

B.1 Radiative Decays

Starting from the Lagrangian in (28), and using the break-
ing procedure as defined in [29,20,21], one can compute
the coupling constants for all radiative and leptonic decays
of relevance. Let us define:

G = − 3eg
8π2fπ

, G′ = − 3eg
8π2fK

, Z = [fπ/fK ]2 . (B1)

Some V Pγ coupling constants are not affected by the
parameters of isospin symmetry breaking. These are:

Gρ±π±γ =
1
3
G

GK∗0K0γ = − G′

3

√
�T

(
1 +

1
�T

)
GK∗±K±γ =

G′

3

√
�T

(
2 − 1

�T

)
.

(B2)
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The ρIPγ coupling constants are:
GρIπ0γ =

1
3
G

GρIηγ =
1
3
G
[√

2(1 − x) cos δP − (2x+ 1) sin δP
]

GρIη′γ =
1
3
G
[√

2(1 − x) sin δP + (2x+ 1) cos δP
]
.

(B3)
The other single photon radiative modes provide the

following coupling constants:

GωIπ0γ = G

GφIπ0γ = 0

GωIηγ =
1
9
G
[√

2(1 − x) cos δP − (1 + 2x) sin δP
]

GωIη′γ =
1
9
G
[
(1 + 2x) cos δP +

√
2(1 − x) sin δP

]
GφIηγ = −2

9
G
[
Z(2 + x) cos δP −

√
2Z(1 − x) sin δP

]
GφIη′γ = −2

9
G
[√

2Z(1 − x) cos δP + Z(2 + x) sin δP
]
.

(B4)

B.2 Pγγ and V − γ Modes

The 2–photon decay modes are not affected by isospin
symmetry breaking in the vector sector and keep their
usual form within the HLS model [20,29,21]:

Gηγγ = − αem

π
√

3fπ

[
5 − 2Z

3
cos θP −

√
2

5 + Z
3

x sin θP

]
Gη′γγ = − αem

π
√

3fπ

[
5 − 2Z

3
sin θP +

√
2

5 + Z
3

x cos θP

]
Gπ0γγ = −αem

πfπ
.

(B5)
As stated in the text, we actually replace this last coupling
by the world average value for fπ as given in the RPP [34].

Finally, the leptonic decay widths of vector mesons
depend on the HLS V − γ couplings. For the ideal combi-
nations, we have:

fρIγ = af2
πg

fωIγ =
fρIγ

3
fφIγ =

fρIγ

3

√
2�V .

(B6)

B.3 Partial widths

We list for completeness in this Section the expressions for
the partial widths in terms of the coupling constants for
the various cases.

The two–photon partial widths are:

Γ (P → γγ) =
m3

P

64π
|GPγγ |2 , P = π0, η, η′ . (B7)

The leptonic partial widths are:

Γ (V → e+e−) =
4πα2

3m3
V

|fV γ |2 . (B8)

The radiative widths are:

Γ (V → Pγ) =
1

96π

[
m2

V −m2
P

mV

]3

|GV Pγ |2 , (B9)

where V is either of ρ0, ω, φ and P is either of π0, η, η′,
and:

Γ (P → V γ) =
1

32π

[
m2

P −m2
V

mP

]3

|GV Pγ |2 . (B10)

The decay width for a vector meson decaying to V +P
is:

Γ (V ′ → V P )

=
1

96π

[√
[m2

V ′ − (mV +mP )2][m2
V ′ − (mV −mP )2]

mV ′

]3

×|GV ′V P |2 . (B11)

Finally, the partial width for a vector meson decaying
into two pseudoscalar mesons of equal masses is:

Γ (V → PP ) =
1

48π
[m2

V − 4m2
P ]3/2

m2
V

|GV PP |2 . (B12)
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